Homomorphic Encryption for Arithmetic of Approximate Numbers

نویسندگان

  • Jung Hee Cheon
  • Andrey Kim
  • Miran Kim
  • Yong Soo Song
چکیده

We suggest a method to construct a homomorphic encryption scheme for approximate arithmetic. It supports an approximate addition and multiplication of encrypted messages, together with a new rescaling procedure for managing the magnitude of plaintext. This procedure truncates a ciphertext into a smaller modulus, which leads to rounding of plaintext. The main idea is to add a noise following significant figures which contain a main message. This noise is originally added to the plaintext for security, but considered to be a part of error occurring during approximate computations that is reduced along with plaintext by rescaling. As a result, our decryption structure outputs an approximate value of plaintext with a predetermined precision. We also propose a new batching technique for a RLWE-based construction. A plaintext polynomial is an element of a cyclotomic ring of characteristic zero and it is mapped to a message vector of complex numbers via complex canonical embedding map, which is an isometric ring homomorphism. This transformation does not blow up the size of errors, therefore enables us to preserve the precision of plaintext after encoding. In our construction, the bit size of ciphertext modulus grows linearly with the depth of the circuit being evaluated due to rescaling procedure, while all the previous works either require an exponentially large size of modulus or expensive computations such as bootstrapping or bit extraction. One important feature of our method is that the precision loss during evaluation is bounded by the depth of a circuit and it exceeds at most one more bit compared to unencrypted approximate arithmetic such as floating-point operations. In addition to the basic approximate circuits, we show that our scheme can be applied to the efficient evaluation of transcendental functions such as multiplicative inverse, exponential function, logistic function and discrete Fourier transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homomorphic Authenticated Encryption Secure against Chosen-Ciphertext Attack

We study homomorphic authenticated encryption, where privacy and authenticity of data are protected simultaneously. We define homomorphic versions of various security notions for privacy and authenticity, and investigate relations between them. In particular, we show that it is possible to give a natural definition of IND-CCA for homomorphic authenticated encryption, unlike the case of homomorp...

متن کامل

Fully Homomorphic Encryption over the Integers

We construct a simple fully homomorphic encryption scheme, using only elementary modular arithmetic. We use Gentry’s technique to construct fully homomorphic scheme from a “bootstrappable” somewhat homomorphic scheme. However, instead of using ideal lattices over a polynomial ring, our bootstrappable encryption scheme merely uses addition and multiplication over the integers. The main appeal of...

متن کامل

Fully Homomorphic Encryption for Point Numbers

In this paper, based on the FV scheme, we construct a first fully homomorphic encryption scheme FHE4FX that can homomorphically compute addition and/or multiplication of encrypted fixed point numbers without knowing the secret key. Then, we show that in the FHE4FX scheme one can efficiently and homomorphically compare magnitude of two encrypted numbers. That is, one can compute an encryption of...

متن کامل

Fixed-Point Arithmetic in SHE Schemes

The purpose of this paper is to investigate fixed point arithmetic in ring-based Somewhat Homomorphic Encryption (SHE) schemes. We provide three main contributions: Firstly, we investigate the representation of fixed point numbers. We analyse the two representations from Dowlin et al, representing a fixed point number as a large integer (encoded as a scaled polynomial) versus a polynomial-based...

متن کامل

Fully Homomorphic Encryption over the Integers with Shorter Public Keys

At Eurocrypt 2010 van Dijk et al. described a fully homomorphic encryption scheme over the integers. The main appeal of this scheme (compared to Gentry’s) is its conceptual simplicity. This simplicity comes at the expense of a public key size in Õ(λ) which is too large for any practical system. In this paper we reduce the public key size to Õ(λ) by encrypting with a quadratic form in the public...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017